s

"~ AD

e

UG FILE COPY

IEEE TRANSA”TIONS ON ANTENNAS AND PROPAGATION, VOL. AP-30, NO. 1, JANUARY 1982

A127100

Unannounced
Justifieation |

»y.
Distribution/

Availability Codes

SE

veil end/or |
Spoein

DTIC

ELECTE
APR 131983 4

D

Diakoptic Theory for Multielement Antennas

GEORG GOUBAU, NARINDRA NATH PURI, senior MEMBER, IEEE, AND FELIX K. SCHWERING, MEMBER, IEEE

Abstract—A theory is presented for the amalysis of multielement
antennas which coasist of imtercommected, conductive structure
elements of electrically small dimensions. The theory is based on the
retarded electromagnetic potentials which permit a diakoptic ap-
proach to the problem. The antenna is broken up into its individual
structure elements. Each element is assumed to be excited by currents
which are impressed at its terminals, i.e., junctions with adjacent
elements (current coupling) and by the electric fields of the currents
and charges on all the other elements (field coupling). Both excitations
are treated independently. Each impressed curreat produces a
*‘dominant’’ current distribution, a characteristic of the element,
which can be readily computed. Current coupling is formulated by
“*intrinsic’’ impedance matrices which relate the scaler potentials at
the terminals of an element, caused by its dominant current dis-
tributions, to the impressed currents of the element. Field coupling
produces ‘‘scatter’’ currents on all the ejements and is formulated by
a *‘field-coupling’’ matrix which reiates the scalar potentials at the
terminals, caused by field coupling, to the impressed currents at all
the terminals. Intrinsic and “‘field-coupling’> matrices are combined
to form the ‘‘complete’’ impedance matrix of the diakopted antenna.
Enforcing continuity of the curreats and equality of the scalar
potentials at all the interconmections between the elements yields a
system of linear equations for the junction currents and the input
impedance of the antenna. Current coupling dominates field coupling.
Field coupling is primarily affected by the domimant current dis-
tributions of the ciements, and in general the scatter curreats have
negligible effect on it. Although detailed numerical investigations will
be presented in another paper, a simple example is included here to
demenstrate that the diakoptic theory yields very good results even if
greatly simplified sssumptions sre made.
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I. INTRODUCTION

N ANTENNA which consists of a number of intercon-

nected conductive structure elements of electrically small
dimensions is shown in Fig. 1. This multielement design was
chosen to obtain a broad-band highly efficient antenna of
relatively low profile [1].

An analytical treatment of such a composite structure ap-
pears to be a rather hopeless undertaking. Commonly used
numerical techniques would require computers with large
storage capacity [2]. This paper offers a new approach to
the problems of this kind, which holds promise for improved
numerical efficiency. According to this approach the com-
posite structure is diakopted into its individual structure
elements. As a simple example Fig. 2 shows a diakopted
dipole with énd capacitor plates. Each structure element is
characterized by electrical quantities which depend only on
the size and shape of the element, and the assembly is treated
similarly to the interconnection of n-port networks.

The excitation of each element is ascribed to two causes:

a) the currents entering the element at its “terminals,” i.c,
junctions with adjacent elements or the source, and b) the
fields of the currents and charges on all the other elements.
The first is referred to as “‘current coupling™ and the second
as “field coupling.” Each excitation is treated separately.
Current coupling implies hypothetical sources with a single
terminal and the capability of impressing a current onto a
conductor. Although such sources violate the continuity
condition, their assumption is permissible if the electromag-
netic fields are expressed by the retarded electromagnetic
potentials. Although the continuity condition is violated in
the treatment of individual structure elements, it is restored
when the elements are interconnected.

Let us for the moment disregard field coupling. If a current
is impressed at.a terminal of a structure element the current
spreads over the surface of the element and produces a current
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Fig. 1. Broad-band multielement antenna.
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Fig. 2. Diakopted capacitively loaded dipole.

distribution which is uniquely determined by the ~.>metry
of the element and the location of the terminal. There are as
many dominant current distributions as there are terminals.
The relationship between the scalar potentials at the terminals,
produced by the dominant current distributions, and the
impressed currents is formulated by the “‘intrinsic impedance
matrix” of the element.

Field coupling excites scatter currents which are super-
imposed on the dominant current distributions. The scalar
potentials at the terminals due to field coupling depend on all
the impressed currents. Their relationships with the impressed
currents are formulated by a “field-coupling’’ matrix, Intrinsic
impedance and “field-coupling” matrices, when combined,
form the “complete impedance matrix” of the diakopted
antenna. This ‘‘complete impedance matrix” relates the total
scalar potentials to all the impressed currents.

Interconnection of the structure elements, which requires
equal scalar potentials at the interconnected terminals and
continuity of the junction currents, is formulated by an inter-
connection matrix. In this manner a system of linear equa-
tions is obtained which yields the junction currents and the
input impedance of the antenna.

11. CURRENT COUPLING BETWEEN
STRUCTURE ELEMENTS

A. Structure Elements with One Terminal

Consider one of the capacitor plates of the dipole in Fig. 2
separated from the other elements and suspended in space

Fig. 3. Excitation of single terminal structure element.

with a current / impressed at the terminal, i.e., contact area
in the center of the plate (Fig. 3). The contact area ¢ is con-
sidered very small compared with the surface of the element.
Excitation by an impressed current cannot be treated with
Maxwell's equations, because Maxwell’s equations imply
sources which separate positive and negative charges. In
contrast, impressed currents require sources which produce
charges. The regarded electromagnetic potentials do not
impose any conditions on the source and therefore, can be
used for our problem,

If i(7) is the surface current density and q(7) the surface
charge density due to the impressed current /, the retarded
potentials are

A(F)= 4% / i(F")YG(,7')dS  (vector potential) (1)
5

1
o) =— / ()G, #)dS  (scalar potential)  (2)
4ne Jg

with L

—jk|r—7r'
6€.1)= ex':—(— ; .l k=2

where 7' is the position vector of the charges and currents
on the surface elements dS, and 7 is the point of observation.
The quantities i(F) and q(F) must satisfy the following two
equations on the surface of the element outside the contact
area ¢:

E(F) X dS = — [ jwAGF) + V()] X dS
=0 (boundary condition) 3)
Vi) +jwq@)=0

The condition that current flux through the boundary cuwg

(continuity condition).

I’ of the contact area o is the continuation of the impresse
current [ can be stated as

¢ 1) {(F)dI =1, ()
T

where #(F) is a unit vector tangential to the surface S and
normal to I'. The current and charge distributions #7) and
q(F) due to the impressed current / are termed as “‘dominant™
distributions since the currents due to field coupling between
the elements are, in general, relatively small, From the bound-
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ary condition (3)
/ E()-i(F)dS =— / [jwAG) + Vo)) - iF)ds = 0.
S S

(6)

The surface of integration § is the surface of the element with
the exclusion of the contact area. Using the relations

Vo« i) = ¥ « @D — &V * i)
=V - (/D) + jwtlF)a?)

and applying Gauss’s theorem one obtains from (6)

(0)]

jw / {AG) « iF) + 0(Pa()) dS
S

l V- @) ds

= ¢¢(;)E(;)- i(F)dr. (8)
T

1f the contact area o is sufficiently small ¢ can be considered
constant within the contact area and on I. Thus with (5),
(8) reduces to

jo / [AF) * i¢) + &()a()) dS = ®I )
S

where ¢ is the scalar potential at the contact area.

The ratio between ® and I can be used to define an im-
pedance which shall be termed “intrinsic impedance.” If 4
and ¢ are expressed by the current and charge distribution,
the intrinsic impedance of the element is

¢
Z——

3[ AF) * iG)+ ¢ )q(P)] dS
7 [A@) i)+ &()aC
wu
2]
[ ]deS

where Q = J/jw is the total charge on the element. The current
and charge distribution functions i/l and q/Q are solely deter-
mined by the geometry of the element and the location of the
coupling area.

When the intrinsic impedance is computed with (10) for
a conductor of any shape, for extremely low frequencies it
takes the form

1 1

BD ot — ——

w0 fwC 4nm

G(r,r)

1 q(')q( )
kz

i() - i¢) _
12

(10)

[

an

where C is the static capacitance of the element.

Both terms in (11) result from the second term (charge term)
in the integrand of (10). The first term in the integrand
(current term) yields a lowest order coatribution ~w and,
therefore, vanishes for w = 0. The first term 1/jwC in (11)is
the one to be expected. The second term represents a negative
resistance of —30 £ for a conductor in free space (n = 120%)
and is not quite obvious. It is brought about by the fact that
an impressed current produces a charge on the element with-
out a countercharge, in contrast to a Maxwell source. If the
scalar potential is expanded in a power series in «w one obtains

¢(?)=4—:;/
ll, /a(F')ds'+ l

The first term of this expansion is the static potential of the
charges. The second term which is independent of 7 repre-
sents a potential, termed “background” potential ¢, which
is uniform in space and has no gradient. This means that ¢y,
does not produce a field. It is this background potential which
produces the —30 2 term in (11). When the element which
we assumed to be suspended in space is within the antenna
structure, the background potential is compensated because
the total of the combined charges on all the other elements is
equal, but opposite in sign, to the charge of the considered
element. The background potential can be avoided if the re-
tarded scalar potential is redefined as a modified potential ¢:

G, 7")eG) as'

ud ) ds jk

. 1 a
¢=0—¢p=— / G, #)q(F) ds’ (12)
4ane Iy
where
—JKiF-F')
GG, 7)= + jk. (13)

|F =

This modified scalar potential will be used throughout the
paper. It is preferred over the conventional potential ¢ since it
will lead to expressions for the intrinsic impedance which are
closer to physical expectation.

Use of & is legitimate as it does not conflict with Maxwell’s
theory. Since V¢ = V¢, the boundary condition (3) and the
dominant current dnstnbutxon derived from it remain un-
changed if ¢ is replaced by ¢. For a Maxwell system, ¢ and
& are identical since q dS extended over the surface of the
entire structure is zero. The intrinsic impedance of a structure
element with one terminal becomes

é jw
Z==-=%
11

_jwu - L @) 1)
oo
] ds' ds.

Equation (14) represents a stationsry formulation of the
intrinsic impedance. This means small errors in the dominant

] [46) - ie)+ ()] ds

1., a@P)eF’)
2

k—’ G, r) (14)
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current distribution have only a second-order effect on the
intrinsic impedance (see Appendix I).

Excitation by an impressed current / at the terminal can be
considered equivalent to excitation by an oscillating charge

13)

which is placed above the contact area at a distance d = 0 as
shown in Fig. 4. The charge on the contact area ¢ consists
essentially of the image charge —Q. As a result a charge +Q is
distributed over the surface area of the structure element be-
cause the net charge on the element must be zero. Under cer-
tain conditions charge excitation has certain practical advan-
tages in the calculation of the dominant current distribution.

The intrinsic impedance Z of an element with one terminal
can be represented by a lumped-element circuit as shown in
Fig. 5. For low frequencies, i.e., when the dimensions of the
element are small compared with the wavelength, C and L can
bezconsidered constant, while R increases proportionately with
w”:

1
Z =——+ jwl + R(w?). 16)
jwC

B. Structure Elements with Two or More Terminals

A structure element with two terminals such as the cylin-
drical conductors of Fig. 2 has two dominant current distri-
butions; one associated with each of the independently im-
pressed terminal currents (Fig. 6). Each dominant current
distribution produces a scalar potential at both contact areas.
i <f>“ and 4)21 are the potentials at the terminals 1 and 2
due to 7,, and &, 2, P2 those due to I3, then the relationship
between the total potentials ®; and Cbz at the terminals and
the impressed currents can be written as

by =d, +&,=2,,1, + 2,0,

b, =d,, + &y, =251, + 2,51, an
For a structure element with M terminals the relationship

between the terminal potentials and the impressed currents is

formulated by an M X M intrinsic-impedance matrix:

(®1=(zl(n 18)

where
jw - el = a
Zjk = [[Ak(’) *if{r) ¥ i (r)q (7)) dS (19)
l,'lk 'S
= IE‘-‘ / / [G(F, ;') li(’) ; ik'—(" )'
am o 5 Iy
1., afPax() ,
-—= G, r)——— S ds,
7667 o ]d s (20)

Iy = jwQy is the impressed current at the jth terminal (with
Ix = 0) and Iy = jwQy is the impressed current at the kth
terminal (with /; = 0). The quantities :’4, 4j, Aj, ¢;, and Iy,
dx, Ax, $ are the comesponding dominant currents distri-
butions, dominant charge distributions, retarded vector, and

Q
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o

Fig. 4. Excitation of structure slement by oscillating chargs.
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Fig. 5. Low frequency equivalemt circuit for single terminal structure
element.
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Fig. 6. Structure element with two terminals.
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Equivalent circuit for two-terminal structure element.

Fig. 7.

scalar potentials, respectively. Equation (20) is derived in
Appendix Il. The symmetry of the intrinsic-impedance matrix
Z;x = Z; is evident from (20). In Appendix 1 it is shown that
(20) is a stationary representation of the impedance matrix
elements.

A lumped-element equivalent circuit for a structure element
with two terminals is shown in Fig. 7. For sufficiently low
frequencies the capacitors and inductors can be considered
constant; while the resistors increase with w*.

A power series expansion of the right side of (20) in terms
of jw yields

1
Zjp = —— + jwLjg + Rpx(w?) + -
Jk jwC jwLjx + Rpp(w®)

where C is independent of j, k (in the low frequency limit the
charge distribution on a given structure element is independent
of the location of the contact area). L;x and R;, are positive
for j = k, but in general are negative for j # k. In this case the
term jwlL jk May be counted as a higher order contribution to
the capacitive term 1/jwC. In Fig. 7 this assumption has been
made and an inductor L, 5, which should appear in series with
the capacitor C, has been omitted. The resistor Ry, of this
circuit branch may be negative, but its magnitude will be
smaller than that of the resistors Ry, — Ry3 and Ry; - Ry;
in the horizontal branches of the circuit.

I11. FIELD COUPLING BETWEEN STRUCTURAL
ELEMENTS

We now consider a diakopted structure and arbitrary cur-
rents impressed at the terminals. The capacitively loaded
dipole of Fig. 2 may serve as an example. The terminals are
identified by a superscript / and a subscript k; the superscript
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. referring to the number of the element and the subscript re-

ferring to the number of the terminal on the element, If there
were no field coupling between the elements, the current dis-
tributions on all the elements would be the dominant distri-
butions associated with the impressed currents.

The field of a dominant current distribution is non-
Maxwellian since the associated net charge is nonzero, If a
current l,' is impressed at the terminal ( ,{ ), the non-Maxwellian
fild of the dominant current and charge distribution i)/,
q.’ induces currents on all the other elements. The scatter
fie's excited by these induced currents are Maxwellian, since
induced current distributions have no net charge. These
“first-order” scatter fields excite second-order scatter fields
and 30 on; each higher order having a greatly reduced ampli-
tude. All these scatter ficlds when summed up form a multiple-
scatter field which is Maxwellian. The currents and charges
associated with the multiple-scatter field are distributed over
all the surfaces $” (including $') and shall be denoted 5i;'",
64. . the superscripts and subscripts mdlcate that they are
produced by the impressed cun-en! lk and located on the
element n. In calculating 5y " and 6qk the structure ele-
ments are assumed open-circuited at their terminals. Hence
the total flux of the scatter currents through the rim of the
contact areas is zero. Scatter currents do not contribute to the
junction currents.

The total field generated by l,‘ (all other terminals open-
circuited) satisfies on every element the boundary conditions:

Ay’ + 84, + @i + 86, X d5" = D,
n= l,"',i, ...’N (2‘)

where A,, ) ¢k are the retarded potennals of the dominant
current and charge distribution zk“, qk and 8Ak s 6¢," are
those of the scatter current and charge distributions 61,“ s
bq ,,"' combined. N is the number of elements

Since the electric field of lk , qk satisfies the boundary
condition on §', it follows from (21) for n = i that

(A, + Vo) X d5' = 0.
Thus,

/ [GwbAy! + Vo) + ix'l ds' =0,
(4

i= 1, N k=1, M, (22)

Using the relations (7) and Gauss’s theorem one obtains the
“backscatter” potential due to the field interaction of the
excited element with the other elements:

‘i’u,n"'(F)lk' = jw ]‘(5;k" i +88'axh)ds’. (23)

The letter F indicates field coupling; the first pair of indices
) refers to the terminal at which & is determined, and the
ucond pair to the terminal of the impressed current which
produces this potential.
As shown in Appendix 111

/‘(6A_k” ig’ + Géquk') dS’
£

>

Ax' -+ 8" + $x'8qx'") dS"™. (29)

Furthermore, from the boundary conditions (21), using the
relations (7) and Gauss's theorem, follows

L' (@' +84,Y - 8™ + By’ + 51 Y qu ™) ds™ =

for every n including i. (25)

The right side of (25) is zero since for scatter currents the
rim integral of Gauss’s theorem in (5) is zero (see Appendix IV).

With (23), (24), and (25) one obtains the “backscatter”
impedances

i &, iF
Zkk " (Fy= __"L‘(._)
'
2
= —jw ) / (GA,‘ . le'”
') &= %
+ 8¢, '8qx ") ds™, (26)

which has to be added to the diagonal terms of the intrinsic-
impedance matrix Zk,,," , using the notation of this section.
Generalization of (26) to obtain the scatter field contributions
to the off-diagonal terms is straightforward and yields
b, ')

I]' i

N /
54, - 8ifn
’k‘l; 2 (LR PR

n=1

Zx Py =

=—jw

+864'84,™) dS™. Q7N

For k = j (27) transforms into (26).

Let us now determine the potentxal Qk m' lF) produced
at the terminal (,‘,) by the current /,,,€ impressed at the terminal
(,,)). From the boundary condition (21)

/’[f")(;;ﬁl+ 54m") + TG’ +86m"] < 0! as’ = o,
.

(28)
and
/ []w(;k'+6,4—k')+ 6(&*‘+8$k‘)] '517".'” das" =0,
Ad

29)
where the second equmon holds for every n including i. The
potentials GAk and 6¢k characterize the scatter field which
would be excited by Ik'

As before, we apply relations (7) and Gauss's theorem, and
obtain from (28)

“’k,m“(“')’k' = jw [ /‘(;m‘ AT WP
. S

L OAy' i’ +8dm'ar") as‘] (30
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and from (29)
0= / (A’ + 8im™ + 4'6q™)as"
sll

GA +8ip'" + 56, 8q,, ) dS". 31
sll

The first term in (30? represents the contribution to the ter-
minal potential &k m 4(F) from the non-Maxwelhan field of
the dominant current and charge distribution i, ", qm’, and the
second term that from the scatter current and charge distri-
butions 8ip ", 8qm™".

As shown in Appendix II1

/ (B, it +80p'0x") as!
si

N
=) / Ax' * 8™ + $'5q ™) a5, (32)
sn

Expressing ¢i>k m LJ(F) in terms of an impedance
&y m"F) = Zi,m " (Y m', (33)

and using (30), (31), and (32), the fieldcoupling impedance
between the terminals ( k) and (,,, ) becomes

1
Zem" ()= T 0 [[(Am Vi bm'ar) as'

N
-2 / ¢4 -s{,,,'"+s$,,‘aq,,.'")ds"].
n=1 ‘sn

i#l (34)

Equations (27) and (34) yield the elements of the field-cou-
pling im redance matrix [Z(F)], which relates the scalar poten-
tials J’,‘ (F) at the terminals, caused by field coupling, to the
impressed currents:

(M ={zMILn,

N M
&/= X b P

=1 met
M

Y 2

=1 m=1

m" Pl 35)

1V. COMPLETE IMPEDANCE MATRIX OF THE
DIAKOPTED ANTENNA

The intrinsic-impedance matrices of the individual struc-
ture elements can be combined into a diagonal block imped-
ance matrix [Z(C?l by writing the matrix clements Z, ; (20)
in the form Z ;'(C). The superscripts { identify the terminals
kand | as belonling to the element {; the letter C indicates
current coupling. The block matrix {Z(C)], whose elements
2, /(C) are zero for 1 # 1, is the “currentcoupling matrix”

of the diakopted gystem and relates the terminal potentials
4

M'G

/0= 2 z, Mo
=1

due to current coupling to the M; impressed currents of the
element i.
The sum of the matrices [Z(C)) and [Z(F)],i.c.,

(2] =[z@) +(zM) (36)

forms the ‘“‘complete impedance matrix” of the diakopted
antenna, which represents the relationship between the total
terminal potentials

. . M M
&'=d i+ d'P=Y T dm*

=1 mel

produced by current and field coupling to all impressed cur-
rents. In matrix form

(®1=(z1(1N. a7

If the matrix elements Z ;*(C) (20) and Z, /*/(F) (27) are
added, the resulting elements Z, ,i” have the same form as
those which pertain to field coupling between different struc-
ture elements (34). In other words (34) can be used as general
formulation for all elements of the complete impedance ma-
trix of the diakopted system, and the condition § # [ can be
dropped.

The symmetry of the [Z] matrix, i.e.,

Zim " =2 M (38)
can be easily verified, by expressing in (34) the vector and
scalar potentials by the current and charge distributions ac-
cording to (1) and (12).

Equation (34) represents a stationary formulation of the
matrix elements of [Z]. This means first-order errors in the
current and charge distributions lead to only second-order
errors in the impedances (Appendix I).

Calculation of the radiation-coupling impedances according
to (27) and (34) requires, in principle, computation of the
scatter current and charge distributions. However numerical
results obtained with this theory indicate that coupling by the
scatter currents is a negligible effect. It has been found that
coupling by the junction currents prevails over field coupling,
and field coupling by the non-Maxwellian fields (radiated by
the dominant current distribution) dominates over that by
the Maxwellian fields (generated by the scatter currents). In
principle field coupling effects by the scatter currents can be
obtained with an iterative procedure, which is not discussed
here.

If coupling by the Maxwellian scatter fields is neglected,
the formula for the eclements of the complete-impedance
matrix for the diakopted system reduces to

Zxmt =~ . / Am' > 0x' + dm'art) as’. (39)
Ik ,m

This means all the matrix elements can be computed from the
dominant ourrent distribution. It is worth mentioning that
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formulation of the antenna problem in te of this approx-
imate impedance matrix can also be deri in a more con-
ventional manner by an application of the méthod of moments
(3], [4]. For this purpose one would formulate the electric
field integral equation of the entire (interconnected) antenna
structure and reduce this equation to a linear system by em-
ploying the Galerkin version of the method of moments,
while choosing the dominant current distributions of the vari-
ous structure elements as (subsectional) basis and weight func-
tions. After transformation of the linear system, by applica-
tion of (7), into a matrix equation between the potentials and
currents at the contact areas, the matrix coefficients are found
to be identical with (39). The choice of the dominant current
distributions as basis functions will alleviate the necessity for
subdividing a given antenna into many small segments. Since
each of these current distributions satisfies the conditioning
Egpn = 0 at its self-clement (and since current coupling domi-
nates) it can be expected that structure elements of compars-
tively large size will already yield accurate results. In other
words the accent of the problem is shifted from solving an
integral equation for the entire antenna to determination of
the dominant current distributions of its structure elements
which, in many cases, can be reduced to canonical problems.
Moreover, because of the stationary properties of the matrix
coefficients (39), the dominant current distributions have to
be known only approximately in order to obtain impedance
values of good accuracy. The numerical example discussed in
Section VI confirms these predictions.

V. INTERCONNECTION OF THE STRUCTURE ELEMENTS
AND INTERCONNECTION MATRIX

The requirement for the diakopted structure with im-
pressed currents to be identical in performance with the
assembled antenna are as follows.

8) The sum of the impressed currents is zero at every junc-
tion between the structure elements. This requirement
assures that the Kirchoff condition of current continuity
is satisfied and that the field of the assembled antenna
is Maxwellian.

b) The scalar potentials at interconnected terminals are
equal,

¢) The potential difference between the input terminals is
equated with the driving voltage of the antenna.

It should be emphasized that the continuity of current at a
junction needs to be imposed only on the impressed cur-
rents which are in turn the fluxes of the dominant current
distributions through the contact areas. The scatter currents
do not contribute to the terminal currents since they are
Maxwellian and have no net charge. Thus the satisfaction of
boundary conditions (21) is consistent with the satisfaction of
terminal condition.

Imposing these junction conditions thé matrix equation
(36) yields a system of linear equations for the unknown junc-
tion currents and the input impedance of the antenna. Using
network theory concepts the reduction of (37) to this linear
system of equations by enforcing the junction conditions can
be formulated with a connection matrix [C] which reduces
the number of potentials and currents of the diakopted struc-
ture to those of the actual structure {5]. The potentisl-current

2L
Lt ol gt 1o g gt ) |
L nLnL Lo
Fig. 8. Thin wire dipole treated as diakopted four-element system.

relationships are
($1=(2}(1  [diskopted antenna) (40)
[®F =(2)17)" [assembled actual antenna). (41)

Primed quantities refer to currents and potentials at various
interconnections of the actual antenna. Requirements a), b),
and c) represent Kirchoff's laws for interconnected structures
and can be written as

(n=tcyy’ 42)
) =[cld9] (43)
(9110 = ()4 1. (44)

(C), represents the transpose of [C]. Note that $' denotes
potential differences, i.e., voltages.

From (42), (43), and (44) the impedance of the actual
interconnected structure can be written as

[z}’ ={cl{z][c]. (45)
The following example shows how [C] and {Z] are obtained.

V1. EXAMPLE

As an example we apply the diakoptic theory to an ordi-
nary thin-wire dipole antenna and compare the results with the
data available in the literature. To obtain a muitielement
structure we cut each wire in half, as shown in Fig. 8, and con-
sider each half as a structure element. The diakopted dipole is
thus modeled by two structure elements with one terminal and
two structure elements with two terminals, so that the total
number of terminals is six. The complete impedance matrix
of the diakopted structure (Z) is therefore a 6 X 6 matrix.
However there are only eight different impedances because the
four structure elements have been assumed to be alike.

Using the enumerations of Fig. 8 the matrix equation (37)
has the form

O3 2] 2y (25| 241 26 | 24
') [Z1]20]2,] 25|25 |26
&' 12,]z,120) 2,1 24| 24
&2 (24)23)2,)20]2,])25
JHBEAAA A A
b4 (291262402502, [20
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with
= = a4
zo =Zl‘33 __.zzzll =zl|ll _22232 =z“22 _zzz
= = = 4
Z,=21,3=23,"3=2,,'2 =25, =2, =2,,*?
Zy=25,'" =2,1=2,,* =7,,?
= = 4
Z3=2,*"=2,"=2,,"2 =2, =2, =2,,% =2,,* =2,,**
2,=2,,3=2,,23=2y," =2, "
Zg=2y,"t=2,,*
= = = 14 _ 41
Zy=2,,"?=2,,*3=2),"=2,,
2,=2,,**=2,,%
The darkened portion of the impedance matnx Z is the ample are the same for all the elements, can be approx-
current-coupling matrix Z(C). imated by linear current distributions (uniform charge
The interconnection conditions require distribution).
13=—11=g $3=¢,1 =9 Although the latter approximation is rather crude, one
=2 =4 L should expect reasonable results if the wire sections are short
Li=—1'=—p . 1'-d.2=v compared with the wavelength because all the impedance
2 ! 0 ! 2 0 formulas are stationary expressions. Linear current distribu-
LY=-1%=1 d,4 = (i;lz =, tion permits analytic formulations of all the impedances
2y, Zy, Z,, etc., and numerical calculations with a pocket
where I, Vo are input current and driving voltage of the calculator (such as HP 25). The results obtained are presented
antenna. in Fig. 9. The curves are plots (from a table by King [6]) of
Because of the symmetry of the antenna the real and the imaginary part of the input impedance of a
_ _ .2 =1 dipole with In (2I/p) = § as a function of § = kI; 2/ is the total
Iy =—0; 8 =—0; $,  =—~d, . length of the dipole and p is the wire radius. The crosses mark

the values of the input impedance as obtained from (46) with
the above assumptions. For § = k! < 0.8 the deviation of the
real part of the input impedance from King’s data is less than

Current and voltage matrix of the interconnected antenna are

(n'= s [&]' = Yo . 10 percent, and for the imaginary part deviation is less than
0 1 percent. From this one can conclude that the linear approx-
imation for the dominant current distribution is adequate if
Thus the interconnection matrix becomes the length of a wire section is <1/15 A. This has been con-
firmed by computer results obtained with each dipole leg
3 1 1 2) 2) ( 4 diakopted into four equal sections. These results are marked
in Fig. 9 by dots and are in good agreement with King’s
< 1 )(2 ) <|) (2 <| 2) (curves) even beyond the second resonance of the antenna.
0) 0 o111 1 0 0 Fig. 10 gives an indication of the convergence of numerical
icl,= , results as segmentation of a given antenna increases. A dipole
m 1 ]-11]0 o1 j-1 antenna is assumed with each leg diakopted into N equal parts;
the relative impedance errors [AR/R |and 1A X/X | are plotted
and the impedance matrix of the assembled antenna is versus the antenna parameters Q = 2 In (2!/p) for f = 2 and
(2] =2 (Zo —Z)) (223~2,-2,)
(223—2,-24) | (20 —22y ~25+22¢— 2,)
Hence
v 2Z3~2, —2,)
Zn= 0= (2g-2)-— 237227 24) (46)
lo 2Zo‘2l|—25+226—27
For the numerical calculation of the impedances the following  various N. The impedance errors were determined by compar-
simplifying assumptions have been made. ison with King's results [6]. In general these errors decrease
with increasing N. But the behavior of the curves in the region
a) Coupling by scatter currents is negligible. of smaller (=10 - 12) suggests that for any { there is an

b) The dominant current distributions, which in this ex- optimum value of N for which the errors are at a minimum,
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Fig. 10. Difference between King’s results and diakoptic theory’s
results.

while a further increase in N would tend to reduce accuracy.
As one should expect the optimum N increases with (2, i.e.,
as the antenna becomes more slender. The length of the wire
sections can be substantially increased if their dominant cur-
rent distributions are approximated by sinusoidal rather than
linear functions. Fig. 11 shows the input admittance of a
folded dipole. The solid curves were taken from a table by
King and Harrison (7). The present method was evaluated
counting the horizontal members of the antenna as one struc-
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Fig. 11. Comparison of folded dipole admittance calculated wth dia-
koptic theory versus King and Harrison.

ture element each, while each vertical member was diakopted
into two sections. For the dominant current distributions on
these sections the sinusoidal approximation was used. Despite
the comparatively large size of the vertical structure elements,
computed impedance values were found to be in good accu-
racy up to and beyond the second resonance.

VII. CONCLUSION

The major advantage of the diakoptic theory for multi-
element antennas, as discussed in this paper, is that the prob-
lem of determining the current distribution on the antenna
need not be solved for the structure as a whole but only for
the individual structure elements. Excitation of each structure
element is ascribed to the currents at its junction with adjacent
elements and to the fields of the surface currents on all the
other elements. The current distributions produced by the
junction currents have been termed dominant current distri-
butions because they constitute the major portion of the
currents on tlie composite antenna structure. The remainder
of the currents are made up by scatter currents which are
produced by field coupling, Field coupling, in first approx-
imation, is determined by the dominant current distributions;
while coupling by the scatter currents in general is negligible.
Introduction of impedances for the characterization of struc-
ture elements and their interaction permits use of network
theory concepts for the determination of the junction currents
and the input impedance of the antenna. Formulation of all
impedances by stationary expressions renders the results
insensitive to computational errors in the current distributions.
As demonstrated by the example given in the paper, even
rather crude approximations to the dominant current distri-
butions can yield good results.

APPENDIX ]
Proof for the Stationary Formulation of the Impedances
1) To prove that

-,w/ - .
z=05 S(A-|+¢q)ds
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represents a stationary formulation of the intringic impedance,
we assume that the dominant current distribution i has an
error of Al. The corresponding errors of g, A, and ¢ shall be
denoted Aq, A4, and Ad. Then

z+Az=j% /[(I+AX)-(."+AE)
S
+ (@ + Ad)q + Aq)] ds. (A2)
The boundary condition for the correct dominant current
distribution yields
/ (A + V) - Al) as =o. (A3)
S

Since the dominant current distribution is the continuation
of the impressed current which is assumed to be unchanged,
Ai is zero at the terminal, and (A3) can be written in the form

jw / (4 - Ai + $Aq)ds = 0. (Ad)
S
Using the relations

/Z-Afds= /M°fds

S S

f $Aq dS = [ Adq ds (AS)
S S

along with (A4) one obtains
/ (AA_ i+ A&q)ds= l(Z-Af+ éAq)dS =0. (A6)
S
Thus from (A1), (A3), and (A6)

Az-—-'% /(A.Z < A7+ APAg)dS. (A7)
S

This means AZ is of the second order.
2) In the case of a mutual-intrinsic impedance

fw - . a
Zjy =—— / (A * iy + ¢rq;) dS (A8)
Il s

both the dominant current distributions iy and i; may have
errors Aiy and Afy. Thus

iw - - ()
AZjy = — /[(Mk iy + Ayay)
Iy ‘g

+ (Ax * Al + $pAq)) + (A, * A +A¢,Aq))) dS.
(A9)

Because the correct dominant_current distributions satisfy the
boundary condition E X dS =0,

/uuZnV&.) N dS=0
S

or
jw /(.3,, <Aij+ 6,,4,) ds=0. (A10)
S
Furthermore

l A4y i + Adygj)ds

= /(A.,'Ai'k+$,Aqk)dS=0. (All)
s
From (A10) and (A11), (A9) reduces to
AZ;, -"-"j— /(Mk . Al} + AékAq,)dS. (A12)
Iy s
Thus AZ;y is of second order.

3) To prove that (34) is a stationary expression for the
fieldcoupling impedances we treat the assembly of discon-
nected structure elements like a single body. This means when
a current is impressed on terminal ( ,ﬁ) we consgider the dom-
inant current distribution 7’ together with the associated
scatter currents 87’ which are distributed over all the elements
as a dominant current distribution of the system. The coupling
impedances between any two terminals can then be formu-
lated like mutual-intrinsic impedances (A8),

jw
A

zk,m“(F)'_‘ fzsn[(;m".'aiml)

s Gl + 50+ B! + 56m’)
* @' +8q,H)) ds. (A13)

The error AZ k,,.‘f produced by errors in the current distri-
butions iy, 87, and i,,’, 81,/ is obtained from (A12),

je
A

AZy ptiF) = L sn((AZ,‘ + 254,Y)

" (Bl + BBigh) + (Ady' + A5GyY)

* (Aqm' + A5q, N dS, (A14)
snd is of second order. This relation can also be derived from
(34), but only in a rather cumbersome manner.

APPENDIX 1
Derivation of (19)

Consider a structure element with several terminals and
let k and / be any two terminals where currents /; and J; are
impressed. The corresponding dominant current and ch
distributions iy, q, and i, q; produce the fields £y and /]
which satisfy the boundary conditions

ExXdS =~ (judy + Té )X d5=0 (A15)




GOUBAU et al.: DIAKOPTIC THEORY FOR MULTIELEMENT ANTENNAS 25

Ej X d§ =~ (jwd; + V) X dS = 0. (A16)

Since the currents iy and j; are tangential to the surfaces it
follows from the boundary conditions

/(ij,+'v'6,)-x’,,ds=o (A17)
A .
](jwi. +Tép)+ fjds=o. (A18)
S

Using the vector identity

T@)=F6-i+d@ -0
with 7 « i = —juwq (A19)

and applying Gauss’s theorem as in (8) of Section II, (A17)
and (A 18) can be written in the form

"‘f [T« @xix)] dS = brrlx
s

=jw [ (A * i + deqr)dS  (A20)
s

- f (7 @edj)) S = by
S
= jw /(Xk i+ @raj)dS, (A2
S

where (P,‘k is the potential at the terminal k due to ixand q 1k
and il),k that at the terminal j due to iy and q,. Of course iy
and q, are induced on the structure by Ix at the kth terminal
with all the other terminals open-circuited, i.e., with other
impressed currents set equal to zero. Forj =k, (A21) trans-
forms into (A20).

With

bk = Zjxly (A22)
one obtains from (A21) the expression for Z;; given in (12).

The expression in (20) is obtained if the potentials 4, and ¢
are expressed by (1) and (12), respectively.

APPENDIX 1II

Deriwmon of (23)

Let :, be a dominant current distribution on the surface
s! and 81,‘ be the scatter current distribution on §” produced
by ik (n=1,2, M)

N
azu(;)ﬂi 2 / Bix!"()GE, 7Y dS™).  (A23)

n=y ‘Sn

Multiplying (A23) with i, ’(?) and integrating over S*
/ 84, '¢) - ix'(F)as’
o1

iy 2 [ Bi"(YGE, ) dS"F) dS'¢)

Z / 8i ") / L'® GG i) dS' ) ds" ()

_2 [ 50,""¢) - 4,'¢)as™;

n=1
GrTY=G(F', 7). (A24)

Similarily it can be shown that
N -
/ Séi'ar’ as' = E / 89,0  ds™. (A25)
si n=1 “§"

The proof for (32) in the body of the paper follows the
same outline as given above.

APPENDIX IV

If a current is impressed on any terminal of a diakopted
structure there will be capacitive currents between the contact
areas of the disconnected elements which have not been con-
sidered in the derivation of the field coupling impedances.
One might therefore conclude that the formulas are approx-
imations which require the gaps between adjacent contact
areas to be so large that capacitive currents are negligible.
The purpose of this appendlx is to show that the expressions
for Z, "%F) and Z,‘,,,," (F) are correct even if the gaps are
mfimtely small,

Fig. 12 shows two structure elements: a cylmdrical rod 1
and a disc 2 with the opposing contact areas 02 and ol f
a current is impressed on the termmal (l ) of the rod there wul
be a potential difference between oz and 0, 2, which, in turn,
produces a displacement current between these terminals. The
potential difference which is the line integral of the electric
potential field between 0,! and 0,2 is essentially determined
by the charges on the contact areas. If the gap is made smaller
and smaller the potential difference approaches zero and the
total current distribution becomes the dominant current
distribution of the interconnected elements. Because of the
equivalence of current and charge excitation displacement
currents at contact areas are equivalent to impressed currents.
Thus the situation discussed above is the excitation of a
diakopted structure, not by one, but by three impressed cur-
rents. To produce excitation by one impressed current in
accordance with our theory, the displacement currents must
be compensated so that there is no current flux from the
contact area onto the surface S of the element (S by definition
does not contain the contact areas of the element). The mag-
nitude of these compensating currents does not enter into the
analysis because if the impressed currents of the diakopted
structure are identical with the junction currents of the inter-
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Fig. 12. Compensation of capacitive currents at contact areas.

connected structure there are no displacement currents be-
tween adjacent contact areas and the sum of all the com-
pensating currents is zero.
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